
Download free eBooks at bookboon.com

Object Oriented Programming Using Java

72

Object Roles and the Importance of Polymorphism

4	� Object Roles and the
Importance of Polymorphism

Introduction

Through the use of worked examples this chapter will explain the concept of polymorphism and the
impact this has on OO software design.

Objectives

By the end of this chapter you will be able to…

•	 Understand how polymorphism allows us to handle related classes in a generalized way
•	 Employ polymorphism in Java programs
•	 Understand the implications of polymorphism with overridden methods
•	 Define interfaces to extend polymorphism beyond inheritance hierarchies
•	 Appreciate the scope for extensibility which polymorphism provides

This chapter consists of eight sections:-

1)	 Class Types
2)	 Substitutability
3)	 Polymorphism
4)	 Extensibility
5)	 Interfaces
6)	 Extensibility Again
7)	 Distinguishing Subclasses
8)	 Summary

4.1	 Class Types

Within hierarchical classification of animals

Pinky is a pig (species sus scrofa)
Pinky is (also, more generally) a mammal
Pinky is (also, even more generally) an animal

We can specify the type of thing an organism is at different levels of detail:

higher level = less specific
lower level = more specific

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

73

Object Roles and the Importance of Polymorphism

If you were asked to give someone a pig you could give them Pinky or any other pig. If you were asked
to give someone a mammal you could give them Pinky, any other pig or any other mammal (e.g. any
lion, or any mouse, or any human being!). If you were asked to give someone an animal you could give
them Pinky, any other pig, any other mammal or any other animal (bird, fish, insect etc).

The idea here is that an object in a classification hierarchy has an ‘is a’ relationship with every class from
which it is descended and each classification represents a type of animal.

This is true in object oriented programs as well. Every time we define a class we create a new ‘type’. Types
determine compatibility between variables, parameters etc.

A subclass type is a subtype of the superclass type and we can substitute a subtype wherever a ‘supertype’
is expected. Following this we can substitute objects of a subtype whenever objects of a supertype are
required (as in the example above).

The class diagram below shows a hierarchical relationship of types of object – or classes.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

74

Object Roles and the Importance of Polymorphism

In other words we can ‘substitute’ an object of any subclass where an object of a superclass is required.
This is NOT true in reverse!

Activity 1

Look at the class diagram above and decide which of the following lines of code
would be legal in a Java program where these classes had been implemented: -

Publication p = new Book(…);

Publication p = new DiscMag(…);

Magazine m = new DiscMag(…);

DiscMag dm = new Magazine(…);

Publication p = new Publication(…);

Feedback 1

Publication p = new Book(…);

Here we are defining a variable p of the general type of ‘Publication’ we are then
invoking the constructor for the Book class and assigning the result to ‘p’ this is OK
because Book is a subclass of Publication i.e. a Book is a Publication.

Publication p = new DiscMag(…);

This is OK because DiscMag is a subclass of Magazine which is a subclass of
Publication ie. DiscMag is an indirect subclass of Publication.

Magazine m = new DiscMag(…);

This is OK because DiscMag is a subclass of Magazine

DiscMag dm = new Magazine(…);

This is illegal because Magazine is a SUPERclass of DiscMag

Publication p = new Publication(…);

This is illegal because Publication is an abstract class and therefore cannot
be instantiated.

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

75

Object Roles and the Importance of Polymorphism

4.2	 Substitutability

When designing class/type hierarchies, the type mechanism allows us to place a subclass object where
a superclass is specified. However this has implications for the design of subclasses – we need to make
sure they are genuinely substitutable for the superclass. If a subclass object is substitutable then clearly
it must implement all of the methods of the superclass – this is easy to guarantee as all of the methods
defined in the superclass are inherited by the subclass. Thus while a subclass may have additional methods
it must at least have all of the methods defined in the superclass and should therefore be substitutable.
However what happens if a method is overridden in the subclass?

When overriding methods we must ensure that they are still substitutable for the method being replaced.
Therefore when overriding methods, while it is perfectly acceptable to tailor the method to the needs
of the subclass a method should not be overridden with functionality which performs an inherently
different operation.

For example, recvNewIssue() in DiscMag overrides recvNewIssue() from Magazine but does the same
basic job (“fulfils the contract”) as the inherited version with respect to updating the number of copies
and the current issue. However, it extends that functionality in a way specifically relevant to DiscMags
by displaying a reminder to check the cover discs.

What do we know about a ‘Publication’?

Answer: It’s an object which supports (at least) the operations:

void sellCopy()
double getPrice()
int getCopies()
void setCopies(int pCopies)
String toString()

Inheritance guarantees that objects of any subclass of Publications provides at least these.

Note that a subclass can never remove an operation inherited from its superclass(es) – this would break
the guarantee. Because subclasses extend the capabilities of their superclasses, the superclass functionality
can be assumed.

It is quite likely that we would choose to override the toString() method (initially defined within ‘Object’)
within Publication and override it again within Magazine so that the String returned provides a better
description of Publications and Magazines. However we should not override the toString() method in
order to return the price – this would be changing the functionality of the method so that the method
performs an inherently different function. Doing this would break the substitutability principle.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

76

Object Roles and the Importance of Polymorphism

4.3	 Polymorphism

Because an instance of a subclass is an instance of its superclass we can handle subclass objects as if they
were superclass objects. Furthermore because a superclass guarantees certain operations in its subclasses
we can invoke those operations without caring which subclass the actual object is an instance of.

This characteristic is termed ‘polymorphism’, originally meaning ‘having multiple shapes’.

Thus a Publication comes in various shapes…it could be a Book, Magazine or DiscMag. We can invoke
the sellCopy() method on any of these Publications irrespective of their specific details.

Polymorphism is a fancy name for a common idea. Someone who knows how to drive can get into
and drive most cars because they have a set of shared key characteristics – steering wheel, gear stick,
pedals for clutch, brake and accelerator etc – which the driver knows how to use. There will be lots of
differences between any two cars, but you can think of them as subclasses of a superclass which defines
these crucial shared ‘operations’.

If ‘p’ ‘is a’ Publication, it might be a Book or a Magazine or a DiscMag.

Whichever, it has a sellCopy() method.

Enhance your career opportunities
We offer practical, industry-relevant undergraduate and postgraduate degrees in central London

› Accounting and finance › Global banking and finance
› Business, management and leadership › Luxury brand management
› Oil and gas trade management › Media communications and marketing

Contact us to arrange a visit
Apply direct for January or September entry

T +44 (0)20 7487 7505 E exrel@regents.ac.uk W regents.ac.uk

http://bookboon.com/
http://bookboon.com/count/advert/10a6ab04-ac0d-4b6b-a275-a2d2009406fa

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

77

Object Roles and the Importance of Polymorphism

So we can invoke p.sellCopy() without worrying about what exactly ‘p’ is.

This can make life a lot simpler when we are manipulating objects within an inheritance hierarchy. We can
create new types of Publication e.g. a Newspaper and invoke p,sellCopy() on a Newspaper without have to
create any functionality within the new class – all the functionality required is already defined in Publication.

Polymorphism makes it very easy to extend the functionality of our programs as we will see in Chapter 11.

4.4	 Extensibility

Huge sums of money are spent annually creating new computer programs but over the years even more
is spent changing and adapting those programs to meet the changing needs of an organisation. Thus as
professional software engineers we have a duty to facilitate this and help to make those programs easier
to maintain and adapt. Of course the application of good programming standards, commenting and
layout etc, have a part to play here but also polymorphism can help as it allows programs to be made
that are easily extended.

CashTill class

Imagine we want to develop a class CashTill which processes a sequence of items being sold. Without
polymorphism we would need separate methods for each type of item:

sellBook (Book pBook)
sellMagazine (Magazine pMagazine)
sellDiscMag (DiscMag pDiscMag)

With polymorphism we need only

sellItem (Publication pPub)

Every subclass is ‘type-compatible’ with its superclass. Therefore any subclass object can be passed as a
Publication parameter.

This also has important implications for extensibility of systems. We can later introduce further subclasses
of Publication and these will also be acceptable by the sellItem() method of a CashTill object, even
through these subtypes were unknown when the CashTill was implemented.

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

78

Object Roles and the Importance of Polymorphism

Publications sell themselves!

Without polymorphism we would need to check for each item ‘p’ so we were calling the right method
to sell a copy of that subtype

if ‘p’ is a Book call sellCopy() method for Book
else if ‘p’ is a Magazine call sellCopy() method for Magazine
else if ‘p’ is a DiscMag call sellCopy() method for DiscMag

Instead we trust the Java virtual machine to look at the object ‘p’ at run time, to determine its ‘type’ and
its own method for selling itself. Thus we can call:-

p.sellCopy()

and if the object is a Book it will invoke the sellCopy() method for a Book. If ‘p’ is a Magazine, again at
runtime Java will determine this and invoke the sellCopy() method for a Magazine.

Polymorphism often allows us to avoid conditional ‘if ’ statements – instead the ‘decision’ is made implicitly
according to which type of subclass object is actually present.

Implementing CashTill

The code below shows how CashTill can be implemented to make use of Polymorphism.

class CashTill

{

 	 private double runningTotal;

CashTill ()

 	 {

 		 runningTotal = 0;

 	 }

 	 public void sellItem (Publication pPub)

 	 {

 	 runningTotal = runningTotal + pPub.getPrice();

 		 pPub.sellCopy();

 		 System.out.println("Sold " + pPub + " @ " +

 					 pPub.getPrice() + "\nSubtotal = " +

 					 runningTotal);

 	 }

 	 public void showTotal()

 	 {

 	 System.out.println ("GRAND TOTAL: " + runningTotal);

 	 }

}

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

79

Object Roles and the Importance of Polymorphism

The CashTill has one instance variable – a double to hold the running total of the transaction. The
constructor simply initializes this to zero.

The sellItem() method is the key feature of CashTill. It takes a Publication parameter, which may be a
Book, Magazine or DiscMag. First the price of the publication is added to the running total using the
getPrice() accessor. Then the sellCopy() operation is invoked on the publication.

Finally a message is constructed and displayed to the user, e.g.

Sold Windowcleaning Weekly (Sept 2005) @ 2.75
Subtotal = 2.75

Note that when pPub appears in conjunction with the string concatentation operator ‘+’. This implicitly
invokes the toString() method for the subclass of this object, and remember that toString() is different
for books and magazines.

This is polymorphism in action – using the toString() operation to invoke the appropriate toString()
method for the relevant class!

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

80

Object Roles and the Importance of Polymorphism

We can show CashTill on a class diagram as below:-

Note that CashTill has a dependency on Publication because the sale() method is passed a parameter
of type Publication. What is actually passed will of course be an object of one of the concrete types
descended from Publication.

Activity 2

Look at the diagram below and, assuming Publication is not an abstract type, decide
which of the pairs of operations shown are legal.

a)	 Publication p = new Publication(…); p.sellCopy();

b)	 Publication p = new Publication(…); p.recvNewIssue();

c)	 Publication p = new Magazine(…); p.sellCopy();

d)	 Publication p = new Magazine(…); p.recvNewIssue();

e)	 Magazine m = new Magazine(…); m.recvNewIssue();

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

81

Object Roles and the Importance of Polymorphism

Activity 2

Look at the diagram below and, assuming Publication is not an abstract type, decide
which of the pairs of operations shown are legal.

a)	 Publication p = new Publication(…); p.sellCopy();
b)	 Publication p = new Publication(…); p.recvNewIssue();
c)	 Publication p = new Magazine(…); p.sellCopy();
d)	 Publication p = new Magazine(…); p.recvNewIssue();
e)	 Magazine m = new Magazine(…); m.recvNewIssue();

Feedback 2

a)	 Legal – you can invoke sellCopy() on a publication
b)	 Illegal – the recNewIssue() method does not exist in publications
c)	 Legal – Magazine is a type of Publication and therefore you can assign an object

of type Magazine to a variable of type Publication (you can always substitute
subtypes where a supertype is requested). Also you can invoke sellCopy() on a
publication. The publication happens to be a magazine but this is irrelevant as far
as the compiler knows in this instance ‘p’ is just a publication.

d)	 Illegal – while we can invoke recvNewIssue on a magazine the compiler does not
know that ‘p’ is a magazine…only that it is a publication.

e)	 Legal – m is a magazine and we can invoke this method on magazines.

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

82

Object Roles and the Importance of Polymorphism

Activity 3

Look at the diagram below and, noting that Student is an abstract class, decide which
of the following code segments are valid…

 PtStudent

applyForJob()

 <<abstract>>
Student

printTimetable()

 FtStudent

applyForLoan()

 Lecturer

help(Student pStudent)

Note FtStudent is short for Full Time Student and PtStudent is short for
Part Time Student.

a)	 Student s = new Student(); Lecturer l = new Lecturer(); l.help(s);
b)	 Student s = new FtStudent(); Lecturer l = new Lecturer(); l.help(s);

Feedback 3

a)	 This is not valid as class Student is abstract and cannot be instantiated
b)	 This is valid. FtStudent is a type of Student and can be assigned to variable of

type Student. This can then be passed as a parameter to l.help()

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

83

Object Roles and the Importance of Polymorphism

Activity 4

Taking the same diagram and having invoked the code directly below decide which
of the following lines (a) or (b) would be valid inside the method help(Student
pStudent)…

	 Student s = new FtStudent();
	 Lecturer l = new Lecturer();
	 l.help(s);

 PtStudent

applyForJob()

 <<abstract>>
Student

printTimetable()

 FtStudent

applyForLoan()

 Lecturer

help(Student pStudent)

a)	 pStudent.printTimetable();
b)	 pStudent.applyForLoan();

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

84

Object Roles and the Importance of Polymorphism

Feedback 4

a)	 This is valid – we can invoke this method on a Student object and also on an
FtStudent object (as the method is inherited).

b)	 Not Valid! While we can invoke this method on a FtStudent object, and we are
passing an FtStudent object as a parameter to the help() method, the help()
method cannot know that the object passed will be a FtStudent (it could be any
object of type Student). Therefore there is no guarantee that the object passed
will support this method. Hence this line of code would generate a compiler error.

4.5	 Interfaces

There are two aspects to inheritance:

•	 the subclass inherits the interface (i.e. access to public members) of its superclass – this
makes polymorphism possible

•	 the subclass inherits the implementation of its superclass (i.e. instance variables and method
implementations) – this saves us copying the superclass details in the subclass definition

In Java, the extends keyword automatically applies both these aspects.

A subclass is a subtype. It’s interface must include all of the interface of its superclass, though the
implementation of this can be different (though overriding) and the interface of the subclass may be
more extensive with additional features being added.

However, sometimes we may want two classes to share a common interface without putting them in an
inheritance hierarchy. This might be because:-

•	 they aren’t really related by a true ‘is a’ relationship
•	 we want a class to have interfaces shared with more than one would-be superclass, but Java

does not allow such ‘multiple inheritance’
•	 we want to create a ‘plug and socket’ arrangement between software components, some of

which might not even be created at the current time.

This is like making sure that two cars have controls that work in exactly the same way, but leaving it to
different engineers to design engines which ‘implement’ the functionality of the car, possibly in quite
different ways.

Be careful of the term ‘interface’ – in Java programming it has at least three meanings:

1)	 the public members of a class – the meaning used above
2)	 the “user interface” of a program, often a “Graphical User Interface” – an essentially

unrelated meaning
3)	 a specific Java construct which we are about to meet

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

85

Object Roles and the Importance of Polymorphism

Recall how the subclasses of Publication provide additional and revised behaviour while retaining the
set of operations – i.e. the interface – which it defined.

This is why the CashTill class can deal with a ‘Publication’ without worrying of which specific subclass
it is an instance. (Remember that Publication is an abstract class – a ‘Publication’ is in reality always
a subclass.)

Tickets

Now consider the possibility that in addition to books and magazines, we now want to sell tickets, e.g.
for entertainment events, public transport, etc. These are not like Publications because:-

•	 we don’t have a finite ‘stock’ but print them on demand at the till
•	 tickets consist simply of a description, price and client (for whom they are being sold)
•	 these sales are really a service rather than a product

Tickets seem to have little in common with Publications – they share a small interface associated with
being sold, but even for this the underlying implementation will be different because we will not be
decrementing them from a current stock

For these reasons Ticket and Publication do not seem closely related and thus we do not want to put
them in an inheritance hierarchy. However we do want to make them both acceptable to CashTill as
things to sell and we need a mechanism for doing this.

Without putting them in an inheritance hierarchy what we want is a more general way of saying “things
of this class can be sold” which can be applied to whatever (present and future) classes we wish, thus
making the system readily extensible to Tickets and anything else.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

86

Object Roles and the Importance of Polymorphism

While the Ticket class is sufficiently different from a Publication that we don’t want to put it in an
inheritance hierarchy it does have some similarities – namely it has a getPrice() method and a sellCopy()
method – both needed by CashTill.

However the sellCopy() method is very different form the sellCopy() method defined in Publication. To
sell a publication the stock had to be reduced by 1 – with a ticket we just need to print it.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2014

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

87

Object Roles and the Importance of Polymorphism

public void sellCopy()

 {

 System.out.println("**************************************");

 System.out.println(" TICKET VOUCHER ");

 System.out.println(toString());

 System.out.println("**************************************");

 System.out.println();

 }

As the sellCopy() method is so different we do not want to inherit its implementation details therefore
we don’t feel that Ticket belongs in an inheritance hierarchy with Publications. But we do want to be
able to check tickets through the till as we can with publications.

Just like publications, tickets provide the operations which CashTill needs:

sellCopy()
getPrice()

and thus the CashTill can sell a Ticket. In fact CashTill can sell anything that has these methods not
just Publications. To enable this to happen we will define this set of operations as an ‘Interface’ called
SaleableItem.

interface SaleableItem

{

 public void sellCopy ();

 public double getPrice ();

}

Note that the interface defines purely the signatures of operations without their implementations.
All the methods are implicitly public even if this is not stated, and there can be no instance variables
or constructors.

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

88

Object Roles and the Importance of Polymorphism

In other words, an interface defines the availability of specified operations without saying anything
about their implementation. That is left to classes which implement the interface.

An interface is a sort of contract. The SaleableItem interface says “I undertake to provide, at least,
methods with these signatures:

	 public void sellCopy ();
	 public double getPrice ();

though I might include other things as well”

Where more than one class implements an interface it provides a guaranteed area of commonality which
polymorphism can exploit.

Think of a car and a driving game in an arcade. They certainly are not related by any “is a” relationship –
they are entirely different kinds of things, one a vehicle, the other an arcade game. But they both implement
what we could call a “SteeringWheel interface” which we can use in exactly the same way, even though
the implementation (mechanical linkage in the car, video electronics in the game) are very different.

We now need to state that both Publication (and all its subclasses) and Ticket both offer the operations
defined by this interface:

class Publication implements SaleableItem

{

 [...class details...]

}

class Ticket implements SaleableItem

{

 [...class details...]

}

Contrast implements with extends.

•	 extends causes the inheritance of both interface and implementation from a superclass.
•	 implements gives a guarantee that the operations specified by an interface will be

provided – this is enough to allow polymorphic handling of all classes which implement a
given interface

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

89

Object Roles and the Importance of Polymorphism

The Polymorphic CashTill

The CashTill class already employs polymorphism: the sale method accepts a parameter of type
Publication which allows any of its subclasses to be passed:

public void sellItem (Publication pPub)

We now want to broaden this further by accepting anything which implements the SaleableItem interface:

public void sellItem (SaleableItem pSelb)

When the type of a variable or parameter is defined as an interface, this works just like a superclass
type. Any class which implements the interface is acceptable for assignment to the variable/parameter
because the interface is a type and all classes implementing it are subtypes of that type.

This is now shown below…

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

90

Object Roles and the Importance of Polymorphism

<<abstract>>
Publication

Book Magazine

DiscMag

CashTill<<interface>>
SaleableItem

Ticket

CashTill is no longer directly dependent on class Publication – instead it is dependent on the interface
SaleableItem.

The relationships from Publication and Ticket to SaleableItem are like inheritance arrows except that
the lines are dotted – this shows that each class implements the interface.

4.6	 Extensibility Again

Polymorphism allows objects to be handled without regard for their precise class. This can assist in
making systems extensible without compromising the encapsulation of the existing design.

For example, we could create new classes for more products or services and so long as they implement
the SaleableItem interface the CashTill will be able to process them without a single change to its code!

An example could be ‘Sweets’. We could define a class Sweets to represent sweets in a jar. We can define
the price of the sweets depending upon the weight and then sell the sweets by subtracting this weight
from our total stock. This is not like selling a Publication, where we always subtract 1 from the stock,
nor it this like selling tickets, where we just print them.

However if we create a class ‘Sweets’ that implements the SaleableItem interface our enhanced polymorphic
cash till can sell them because it a sell any SaleableItem.

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

91

Object Roles and the Importance of Polymorphism

In this case, without polymorphism we would need to add an additional “sale” method to CashTill to
handle Tickets, Sweets and further new methods for every new type of product to be sold. By defining the
SaleableItem interface can introduce additional products without affecting CashTill at all. Poymorphism
makes it easy to extend our programs and this is very important.

Interfaces allow software components to plug together more flexibly and extensibly, just as many other
kinds of plugs and sockets enable audio, video, power and data connections in the everyday world. Think
of the number of different electrical appliances which can be lugged into a standard power socket – and
imagine how inconvenient it would be if instead you had to call out an electrician to wire up each new
one you bought!

Activity 5

Adapt the following diagram by adding a class for Diesel cars in such a way that it can
be used to illustrate polymorphism.

Feedback 5

This is one solution to this exercise…there are of course others.

Here Mechanic is directly interacting with Car. In doing so it can interact with any
subtype of Car e.g. Petrol, Diesel or any other type of Car developed in the future e.g.
(Electric). These are all different (different shapes) and yet Mechanic can still interact
with them as they are all Cars. This is polymorphic.

If an ElectricCar class was added Mechanic would still be able to work with them
without making any changes to the Mechanic class.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Object Oriented Programming Using Java

92

Object Roles and the Importance of Polymorphism

Activity 6

Assume Car has a fixEngine() method that is overridden in DieselCar but not
overridden in PetrolCar (as shown on the diagram below).

Look at this diagram and answer the following questions…

a)	 Would the following line of code be valid inside the repair() method ? pCar.
fixEngine();

b)	 If a DiesalCar object was passed to the repair() method which actual method
would be invoked by pCar.fixEngine(); ?

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

93

Object Roles and the Importance of Polymorphism

Feedback 6

a)	 Yes! We can apply the method fixEngine() to any Car object as it is defined in the
class Car.

b)	 This would invoke the overridden method. The method must be defined in the
class Car else the compiler will complain at compile time. However at run time the
Java Runtime Environment (JRE) will identify the object passed as being of the
subtype DiesalCar and will invoke the overridden method. Clever stuff given that
the repairCar() method is unaware of which type of car is actually passed.

4.7	 Distinguishing Subclasses

What if we have an object handled polymorphically but need to check which subtype it actually is? The
instanceof operator can do this:

object instanceof class

This test is true if the object is of the specified class (or a subclass), false otherwise.

Note that (myDiscMag instanceof Magazine) would be TRUE because a DiscMag is a Magazine

instanceof can also be used with an interface name on the right, in which case it tests whether the class
implements the interface.

Strictly instanceof is testing whether the item on the left is of the type, or a subtype of, the type specified
on the right. Doing this we could extend the CashTill class such that it displas a specific message
depending upon the object sold.

public void saleType (SaleableItem pSelb)

{

 if (pSelb instanceof Publication)

 {

 System.out.println("This is a Publication");

 }

 else if (pSelb instanceof Ticket)

 {

 System.out.println("This is a Ticket");

 }

 else

 {

 System.out.println("This is a an unknown sale type");

 }

}

http://bookboon.com/

Download free eBooks at bookboon.com

Object Oriented Programming Using Java

94

Object Roles and the Importance of Polymorphism

pSelb instanceof Publication will be true if pSelb is any subclass of Publication (i.e. a Book, Magazine or
DiscMag). If we wished to we could equally test for a more specific subtype, e.g. pSelb instanceof Book

Notice that once we compromise the polymorphism by checking for subtypes we also compromise the
extensibility of the system – new classes (e.g. Sweets) implementing the SaleableItem interface may
also require new clauses adding to this if statement, so the change ripples through the system with the
consequence that it becomes more costly and error-prone to maintain.

Instead of doing this we should try to package different behaviours into the subclasses themselves,
e.g. we could define a describeSelf() method in the interface SaleableItem this would then need to be
implemented in each class that implements the SaleableItem interface. Thus each subtype would display
a message giving the type of item being sold. The if statement above, in CashTill, can then be replaced
with pSelb.describeSelf(). Thus when we add new classes to the system we would not need to change
the CashTill class.

4.8	 Summary

Polymorphism allows us to refer to objects according to a superclass rather than their actual class.

Polymorphism makes it easy to extend our programs by adding additional classes without needing to
change other classes.

We can manipulate objects by invoking operations defined for the superclass without worrying about
which subclass is involved in any specific case.

Java ensures that the appropriate method for the actual class of the object is invoked at run-time.

Sometimes we want to employ polymorphism without all the classes concerned having to be in an
inheritance hierarchy. The ‘interface’ construct allows us to provide shared interfaces (i.e. collections of
operations) in this situation. When doing this there is no inherited implementation – each class must
implement ALL the operations defined by the Interface.

Any number of classes can implement a particular interface.

http://bookboon.com/

